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ABSTRACT: Corn steep liquor (CSL) is an important raw material that has a high nutritional value and serves as a nitrogen
source. This study aimed to develop a fast, versatile, cheap, and environmentally safe analytical method of quantifying the total
acidity (TA) of CSL as well as its contents of dry matter (DM), total sugars (TS), total reducing sugars (TRS), total free amino
acids (TFAA), total nitrogen (TN), and total sulfite (TSu). The near-infrared (NIR) spectroscopy measurements of 66 samples
(22 batches) of CSL were analyzed by partial least-squares regression using several spectral preprocessing methods. Multivariate
models developed in the NIR area showed good predictive abilities for DM, TA, TS, TRS, TFAA, TN, and TSu determination.
These results confirm the feasibility of the multivariate spectroscopic approach as a replacement for expensive and time-
consuming conventional chemical methods. Thus, a convenient and feasible method for the quality control of fermentation raw
materials for food additives and fine chemicals, especially in CSL, is established.
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■ INTRODUCTION

Biomanufacturing technology is rapidly developing. However,
uncertainties in the quality control of raw materials lead to
unstable fermentation.1,2 Recent studies report the develop-
ment of byproducts using advanced process analytical
technology (PAT) to discover a highly feasible method that
increases the production yield and sugar−acid transfer ratio.3−6

Corn is used to produce corn starch. The main byproduct
and surplus raw material is corn steep liquor (CSL). The ratio
of the consumption of food additives and fine chemicals from
corn to the total consumption is about 30%, about 50 million
tons per annum, over the past 3 years.7 Controlling the quality
of the corn raw materials to improve the utilization efficiency
means saving corn resources. CSL is a soluble solid that
constitutes nearly 40−50% (w/w) of the dry weight of corn and
consists of a mixture of reducing sugars and amino acids
(mostly free amino acids).8,9 Previous results of PAT methods
used to describe the acidity of CSL as well as its contents of
total sugars (TS), total reducing sugars (TRS), total free amino
acids (TFAA), total nitrogen (TN), and total sulfite (TSu)
indicate the importance of CSL as a substrate material for
fermentation purposes, even though its physical and chemical
functions are influenced by the corn variety.10 CSL can be used
as a substrate material for the production of glutamic acid,
penicillin, lactic acid, hyaluronic acid, and others. It has been
studied for its potential use as a nutritional and functional

supplement to water-soluble plant proteins and vitamins in the
fermentation process.11−13

The use of CSL as a biotechnological substrate, nitrogen
source, and carbon source largely depends on its chemical
composition.14 At the beginning of fermentation, the ready-
made carbon frames of CSL are consumed by bacteria. The
quality of CSL and its organic nitrogen content are important
in the fermentation process.15−17 However, the chemical
characterization and quantification of dry matter (DM), total
acidity (TA), TS, TRS, TFAA, TN, and TSu by traditional
analyses require tedious sample preparation and pose inherent
environmental risks, in addition to being time-consuming and
expensive. Nevertheless, TRS and TFAA are important in the
entire fermentation process.
Several types of food have been analyzed using near-infrared

spectroscopy (NIR), and a number of multivariate calibrations
have been performed mainly using partial least-squares (PLS)
regression (PLSR).18−23 However, no research on CSL using
both NIR and PLSR has been reported. In the current work,
multivariate models were developed to quantify DM, TA, TS,
TRS, TFAA, TN, and TSu in CSL using NIR and PLSR. CSL
was classified using NIR and principal component analysis

Received: March 27, 2012
Revised: July 29, 2012
Accepted: July 29, 2012
Published: July 30, 2012

Article

pubs.acs.org/JAFC

© 2012 American Chemical Society 7830 dx.doi.org/10.1021/jf3012823 | J. Agric. Food Chem. 2012, 60, 7830−7835



(PCA). The current study provides a simple and rapid method
for the determination of the main categories of CSL
components by NIR-PLSR.

■ MATERIALS AND METHODS
CSL Samples. Twenty-two batches (three samples for each batch)

of CSL consisting of commercial and experimental varieties were used
to build the regression models. These samples were collected from the
provinces of Shandong (five batches), Henan (eight batches), and
Hebei (six batches). The commercial samples were bought from a
local retail market. All samples were refrigerated at 4 °C and stored at
room temperature before measurements.
Wet Chemistry Analysis. To determine DM, a halogen moisture

analyzer (model HB43-S, Mettler Toledo, Swiss Confederation) was
used at mode A under an auto condition. The sample weights ranged
from 2.6 to 3.5 g per specimen. TA was determined by titrimetry and
expressed as weight percent hydrochloric acid. A 0.01 mol/L NaOH
solution was used for the titration, and phenolphthalein was used to
indicate the pH end point of the reaction. TSu was also determined by
titrimetry and expressed as weight percent hydrochloric acid. An
iodine titration solution was used to determine the TSu concentration
of the remaining solution after TA determination, and starch was used
as an indicator of the end point of the reaction.
The corresponding colorimetries were independently used to

determine the TS and TRS concentrations. TS quantification was
performed using a phenol−sulfuric acid method, and the absorbance at
488 nm was recorded using a Shimadzu spectrophotometer (model
1800; Kyoto, Japan) and a quartz cuvette with a path length of 1 cm.
TRS was detected by the 3,5-dinitrosalicylic acid method.24 The solute
fraction was diluted to adjust the concentration according to the
sensitivity of the analytical technique (from 12.0 to 200.0 μg/mL for
TS and TRS) prior to the analysis.
The determination of TFAA, expressed as milligrams per milliliter

of free amino acids, was performed by high-performance liquid
chromatography (HPLC).25 More than 10 free amino acids are
important CSL components. An ATN-100 Kjeldahl nitrogen analyzer
(Hongji Instrument Co., Ltd., Shanghai, China) comprising a
digestion furnace with a pit furnace and an azotometer distiller was
used to determine TN.
The sample (0.2 g) was digested with potassium sulfate (5 g),

copper sulfate (0.3 g), and concentrated sulfuric acid (10 mL) at 450
°C for 25 min until the solution turned green. After 10 min of
distillation with certain amounts of NaOH and H2O, sulfuric acid
(0.05 mol/L) was used as a titrant to determine the end point; that is,
the receiving bluish green liquid becomes gray-purple.
All analytical determinations were conducted in triplicate; each

sample was filtered using a 0.45 μm Millipore membrane prior to the
determination.
Spectroscopic Measurements and Data Pretreatment. NIR

spectra were obtained from 1350 to 1800 nm at an interval of 0.1 nm
and at a total of 32 scans using an Axsun NIR Analyzer XL 410
spectrophotometer (Axsun Technologies Inc., Billerica, MA, USA). A
total of 66 spectra were obtained for all samples and expressed as
reflectance values (percent). The spectra were pretreated to remove
irrelevant information and noise before the model was calibrated.
Preprocessing methods such as nonpretreatment, convolution
smoothing, one-dimension convolution (one-DC), two-dimension
convolution (two-DC), multiple-scatter correction (MSC), standard
normal variable transformation, and spectral data normalization were
used to deal with the CSL data. The typical and selected pretreated
spectra are shown in Figure 1.
PLS and Latent Variable (LV) Selection. The spectral and

concentration data were organized in matrices, and the multivariate
calibration model was developed using THUNIR (3rd ed., Tsinghua
University, Beijing, China).26−29 The number of LVs, namely, the
main factors, was selected on the basis of the minimization of the root-
mean-square error of cross-validation (RMSECV), which corresponds
to the predictive error obtained in the cross-validation stage. The step
is similar to the cross-validation, wherein a parameter based on the

division of the calibration is set into subgroups, and each subgroup is
sequentially removed for inclusion in the predictive set.30

PCA. A PCA of the NIR spectra was conducted for the quality
control analysis of CSL.31−33 The main purpose of PCA is dimension
reduction to obtain a few new variables that can express the data
characteristics of the original variables without loss of information as
much as possible. All data were fed into the PCA. All programs were
operated using Unscrambler V 9.7 (Camo Software AS, Oslo,
Norway).

■ RESULTS AND DISCUSSION
Conventional Chemical Analysis. Table 1 shows the

average results for the measured values of DM (% w/w), TA
(% w/w), TS (mg/mL), TRS (mg/mL), TFAA (mg/mL), TN
(% w/w), and TSu (% w/w), as well as the standard deviation
(SD) from 66 selected CSL samples. TFAA had the lowest
concentration and a large coefficient of variation (CV) from
selected CSL samples (16%). These results closely agree with
the values from previous studies.34,35 DM had the highest
average concentration (37.83%) and the lowest CV (9%),
whereas TN and TSu had CVs (12%) that were significantly
lower than those previously reported. TRS (CV = 59%) had the
highest sample heterogeneity followed by TS (CV = 43%). The
average acidity was 9.75%, and a low CV of 13% was observed.
Although the SD of DM was small, the SDs of TS and TFAA

were large and different from each other, significantly affecting
the quality of CSL as a fermentation substrate. The credibility
and repeatability of the conventional analytical methods are
high but time-consuming.

NIR Analysis. The NIR spectra of CSL were acquired from
1350 to 1800 nm. The current study mainly used two
pretreatment methods. One is DC, which effectively eliminates
the interference of the baseline and background and
distinguishes overlapping peaks to enhance the resolution and
sensitivity. The other is MSC, which eliminates the scattering
effects produced by the inhomogeneous distribution and
irregular form of the particles. MSC is used to analyze the
diffuse reflection of solid samples and transmission reflection of
slurry substances.

Figure 1. Typical raw spectra (A) and pretreated spectra: (B) one-
dimension convolution spectra; (C) one-dimension convolution plus
multiple scatter correction spectra of corn steep liquor samples (total
of 66 samples).
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The bands corresponding to the functional groups of CSL
were extremely difficult to identify because of the complicated
and overlapping signals. Thus, the automatic optimization
software THUNIR was used to obtain the best model that had
the lowest LV and RMSECV. THUNIR is a dedicated
chemometrics software created by Tsinghua University. It is
used in several pretreatment and band-selection methods. Its
core algorithm is PLS.
PLS Models. The sample selections for the calibration and

external validation used compatible and typical sets of the
determination analysis as key factors. Fifty-six spectra were used
for the calibration group, whereas 10 other spectra were used as
an external validation set, representing the seven varieties of
CSL from different firms (Table 1). The SD values showed that
the calibration and external validation sets were similar to the
contents. The models were built using the NIR regions, several
LV numbers, and a number of signal pretreatment methods to
achieve high predictive ability. The best models were selected
using suitable and smaller square error of cross-validation
(SECV) values. The selection process for LV and SECV was
automated using THUNIR.
Figure 2A shows that the introduction of the sixth LV

minimized the RMSECV (SECV) value. Under this condition,
the model exhibited good predictive performance, providing
high coefficient values for the prediction of the calibration set
(Figure 2B) and lower error values in the cross-validation
(SECV of 1.5003). Figure 2C shows the X-loading score of

TFAA for the raw spectra, which were used in the TFAA
model. Figure 2C indicates the good possibility to predict the
content. The TFAA absorption signals were obtained from
1600 to 1800 nm. The first main overtone absorption band

Table 1. Determination of Dry Matter (DM), Total Acidity (TA), Total Sugars (TS), Total Reducing Sugars (TRS), Total Free
Amino Acids (TFFA), Total Nitrogen (TN), and Total Sulfite (TSu) in Corn Steep Liquor by Wet Chemical Methods

batch no. codea DM % g/g) TA (% w/w) TRS (mg/mL) TS (mg/mL) TFAA (mg/mL) TN (% w/w) TSu (% w/w)

01003 1-C; 2-C; 3-C 40.58 9.23 11.04 48.71 76.71 47.26 0.0141
01004 4-C; 1-V; 5-C 42.65 8.79 5.41 25.77 65.78 53.60 0.0148
01006 6-C; 7-C; 8-C 39.19 8.94 19.31 78.86 62.35 45.24 0.0146
01015 9-C; 10-C; 11-C 37.26 12.34 4.28 18.81 64.56 50.21 0.0141
01017 12-C; 13-C; 2-V 40.25 12.22 2.74 19.20 71.05 55.82 0.0151
01018 3-V; 4-V; 14-C 40.55 11.23 3.13 18.85 52.42 46.37 0.0146
01019 15-C; 16-C; 17-C 42.29 10.77 3.30 18.71 61.68 46.24 0.0151
01020 18-C; 19-C; 20-C 44.08 9.23 3.92 18.88 61.60 46.51 0.0147
02001 5-V; 21-C; 22-C 40.72 8.86 4.73 31.20 61.81 47.73 0.0150
02002 23-C; 24-C; 25-C 35.39 10.54 5.22 27.70 51.90 67.72 0.0118
02003 26-C; 27-C; 28-C 37.19 9.65 7.41 39.24 46.23 50.34 0.0122
02004 29-C; 30-C; 31-C 37.76 11.46 7.79 39.58 36.97 60.77 0.0150
02005 32-C; 6-V; 7-V 39.05 9.34 8.71 45.90 53.97 46.80 0.0076
02006 33-C; 34-C; 35-C 38.59 10.52 6.50 36.08 45.04 48.01 0.0120
02007 8-V; 36-C; 9-V 37.39 8.75 2.03 17.04 47.07 48.22 0.0147
02008 37-C; 38-C; 39-C 35.09 7.70 10.55 45.35 57.58 48.41 0.0140
02009 40-C; 41-C; 42-C 33.16 9.33 6.04 42.06 53.74 49.60 0.0143
02010 43-C; 44-C; 45-C 33.95 8.86 4.98 34.14 51.80 52.65 0.0147
02011 46-C; 47-C; 10-V 38.13 8.39 6.79 39.96 67.47 48.35 0.0133
02012 48-C; 49-C; 50-C 31.74 9.83 11.84 45.97 65.33 61.73 0.0136
02013 51-C; 52-C; 53-C 33.05 9.45 4.53 21.63 52.30 59.55 0.0144
02014 54-C; 55-C; 56-C 34.12 9.07 5.43 30.64 55.26 53.93 0.0143

min 31.74 12.34 19.31 78.86 76.71 67.72 0.0151
max 44.08 12.34 19.31 78.86 76.71 67.72 0.0151
av 37.83 9.75 6.62 33.83 57.39 51.593 0.0138
SDb (C) 3.44 1.19 3.91 14.62 9.41 6.20 0.0016
SD (V) 1.68 1.35 2.58 11.95 6.65 3.23 0.0030
CVc (%) 9 13 59 43 16 12 12

aCode of the sample numbers of calibration (C) and external validation (V). bSD, standard deviation. cCV, coefficient of variation [(standard
deviation/average) × 100].

Figure 2. Square error of cross-validation (SECV)/standard error of
calibration (SEC) versus latent variable number (LV): (A)
introduction of the sixth LV minimized the RMSECV (SECV) value
[high coefficient values between predictive values and experimental
values for the calibration set (56 samples)]; (B) X-loading score of the
model for total free amino acids (TFAA) for the raw spectra; (C) good
possibility to predict TFAA.
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corresponding to N−H of the amino acids was observed
between 1530 and 1600 nm. The first overtone C−H
absorption of methyl was in the bands between 1700 and
1800 nm. The C−H combination bands appeared within the
range of 1300−1500 nm. A C−H peak corresponding to the
carbonyl functional group separated by a saturated carbon
appeared at 1682 nm.36 An absorption peak near 1454 nm
(around 1445 nm) may be the first overtone corresponding to
free OH and/or carboxylic acid.37

The regression model with the best prediction for the TFAA
concentration was obtained by one-dimension convolution on
the spectra and PLS, which was selected from the models using
pretreatment methods such as nonpretreatment, one-DC, and
one-DC+MSC for the spectral data. The true and predicted
values indicate that the model had a good predictive capacity
(Figure 2B). The correlation coefficients showed that the
spectral bands of highest importance for the established
correlation were those corresponding to the COO− and
NH4

+ groups of the amino acids.
The determination of DM by the one-DC of the NIR region

produced favorable effects. The model used a number of LVs
(Table 2) to gain a small RMSECV, resulting in a more
accurate prediction. The best predictive capacity for TS was
acquired using the one-DC of the spectral data within 1619−
1709 nm with eight LVs. The correlation between the real and
predicted values was interesting. The TRS model was acquired
through a one-DC and multiple-scatter correction of the
spectral bands from 1529 to 1709 nm with nine LVs. Similar to
the TS model, the predictive accuracy of TRS was not as good
as that of the other models. This result may be due to the
instability of the samples.
The best outcome and lowest predictive errors for the TA

concentration in CSL were obtained with the one-DC of the
spectral data from 1619 to 1799 nm with seven LVs. The best
predictive capacities of all models are shown in Table 3, which
also shows the experimental and predictive values of all
compounds in CSL (sample set for external validation). Under
normal circumstances, the multivariate calibration models
confirmed the predictive capacities represented by the lower
relative standard errors. The models used in the present study
generally showed better predictive capacities than other similar
methods and used lower and more appropriate numbers of
latent variables.
The prediction of the DM, TA, TS, TRS, TFAA, TN, and

TSu concentrations by the regression models showed a lower
standard error for the external validation sample set compared
with that of the conventional methodologies (Table 3). Except
for TN and DM, the ratios of the standard deviation of the

validation set to the standard error of prediction were >3,
illustrating the feasibility to determine the main categories of
CSL components by NIR and PLSR.

PCA Result. NIR spectroscopy is a widely used efficient
technique for the quality control of complex mixtures,
especially foods and wines. Multivariate data analysis is often
combined with NIR spectroscopy, and the data are pretreated
using MSC, one-DC, and other techniques. The homogeneity
of CSL is the quantitative basis of composition determination
by NIR. The heterogeneity of CSL may be due to the different
production processes and causes different raw materials to
cluster initially. PCA is useful in distinguishing and efficiently
separating raw materials that come from different commercial
batches (Figure 3). The samples from different companies were
clustered. The homogeneity of the samples from the same
manufacturer was better than that of the samples from different
manufacturers. One batch sample varied from the other
samples of the same manufacturer, and a batch of commercial
samples was close to the manufacturer in Shandong, suggesting
that the differences between samples of the same manufacturer
were still large. The classification results indicated that the PCA
method can be used in the quality control of CSL by clustering,
which enables easy distinction of the CSL source. The results
suggest that all materials prepared using different pretreatment
processes, manufacturing procedures, and storage conditions
vary in quality. All of these factors can lead to significant
differences in CSL quality. Therefore, the rapid and accurate
determination of CSL is very convenient and allows
fermentation to proceed smoothly.
This study was undertaken to establish the feasibility of using

NIR spectroscopy to predict the main components of CSL,
including DM, TA, TS, TRS, TFAA, TN, and TSu. The seven
PLS models built by their most appropriate wavebands and LVs
showed good predictive capacities for the analysis of CSL
samples. The average value of the prediction was equally
accurate, indicating that the NIR-PLS method can suitably
replace the laborious traditional chemical analyses. The rapid
determination of the major CSL components, especially DM,
TS, and TFAA, confirms the feasibility of using NIR-PLSR to
realize accurate and systematic fermentation with the right
concentrations.
The rapid and simultaneous quantification of CSL

components is convenient for regulating the fermentation
products. The appropriate adjustment of parameters depending
on the variable quality of CSL makes the fermentation process
stable and the level of lower power consumption controllable.
The advantages of NIR spectroscopy and the PLS method are
their abilities to develop multivariate regression models with

Table 2. Parameters of Calibration Models of Dry Matter (DM), Total Acidity (TA), Total Sugars (TS), Total Reducing Sugars
(TRS), Total Free Amino Acids (TFFA), Total Nitrogen (TN), and Total Sulfite (TSu)

model LVa SPNIRSb bands (nm) SECc SECVd fitting equation CDe offset

DM 8 one-DCf 11,3 1619−1799 0.4966 0.8517 y = 0.9798x + 0.7572 97.98 −0.0012
TA 7 one-DC 11,3 1619−1799 0.2751 0.4443 y = 0.9484x + 0.5040 94.84 −0.0031
TS 8 one-DC 11,3 1619−1709 2.1554 3.5203 y = 0.9788x + 0.7381 97.88 −0.0471
TRS 9 one-DC 11,3 + MSCg 1529−1709 0.9290 0.3668 y = 0.9915x + 0.0594 99.15 −0.1967
TFAA 6 one-DC 11,3 1619−1799 2.4146 1.5003 y = 0.9766x + 1.3436 97.66 0.0634
TN 8 one-DC 11,3 1529−1799 2.7426 1.0973 y = 0.9694x + 1.5934 96.94 −0.3934
TSu 5 one-DC 11,3 1350−1439 0.0009 0.0004 y = 0.9219x + 0.0011 92.19 0.0000

1529−1799
aLatent variable number. bSpectrum pretreatment in near-infrared spectroscopy. cStandard error of calibration. dStandard error of cross-validation.
eCoefficient of determination. fDimension convolution. gMultiple scatter correction.
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good correlation coefficients and low predictive errors. The
inadequacy of the method is that a third, independent, set from
new manufacturers should be predicted to show the power of
the best models in this study. However, a new, rapid, and
accurate method for determining the main categories of CSL
components is established. The method can be used to
determine the stability of raw materials and can also be applied
in other related fields.
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Figure 3. PCA project plot on the NIR of corn steep liquor: samples
from different companies were clustered, and the homogeneity of the
samples from the same manufacturer was better than that of the
samples from different manufacturers. Operated by the Unscrambler
(version 9.7 2007).
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TFAA, total free amino acids; TN, total nitrogen; TRS, total
reducing sugars; TS, total sugars; TSu, total sulfite.
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